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Abstract—We present a novel image denoising algorithm that
uses external, category specific image database. In contrast to
existing noisy image restoration algorithms that search patches
either from a generic database or noisy image itself, our method
first selects clean images similar to the noisy image from a
database that consists of images of the same class. Then, within
the spatial locality of each noisy patch, it assembles a set
of “support patches” from the selected images. These noisy-
free support samples resemble the noisy patch and correspond
principally to the identical part of the depicted object. In
addition, we employ a content adaptive distribution model for
each patch where we derive the parameters of the distribution
from the support patches. We formulate noise removal task
as an optimization problem in the transform domain. Our
objective function composed of a Gaussian fidelity term that
imposes category specific information, and a low-rank term that
encourages the similarity between the noisy and the support
patches in a robust manner. The denoising process is driven
by an iterative selection of support patches and optimization
of the objective function. Our extensive experiments on five
different object categories confirm the benefit of incorporating
category-specific information to noise removal and demonstrates
the superior performance of our method over the state-of-the-art
alternatives.

Index Terms—denoising, external datasets for denoising,
category-specific denoising.

I. INTRODUCTION

Our objective in this work is to remove noise from images
(or image regions) that depict a single object of a known class.
This goal perfectly complements the recent advancements in
object detection and classification [1], [2]. Denoising of im-
ages with known classes is instrumental in various applications
such as face image enhancement thus all image solutions tasks
where face images are used, document image recovery, digital
heritage, cell image analysis, and image aesthetics to count a
few.

State-of-the-art techniques in image denoising [3], [4], [5],
[6], [7], [8], [9] exploit repetitive local patterns that fre-
quently occur in natural images, by selecting and grouping
similar patches for collaborative denoising. Making use of
this property, non-local means [3], [10] denoise images by
computing a weighted average of non-local similar patches,
with the weights set as the Euclidean distances between their
pixel values. Dong et al. [7] proposed an `p,q norm constraint
to promote patch similarity and derived a denoising solu-
tion via spatially adaptive iterative singular-value thresholding
(SAIST).
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Fig. 1. Denoising results of two sample images from face and cat categories.
As visible, by using the same category support dataset we generate higher
PSNR scores - shown in red (best viewed in high-resolution).

Collaborative filtering with block matching (BM3D) and
its variants [4], [8], [5] are prominent baseline methods that
express patch similarity in a 2D transform domain. The core
idea lies in the imposition of structural similarity among
patches in each group by analyzing the subspace of the
transform coefficients. The denoising of individual patches
relies on the implicit assumption that insignificant coefficients
correspond to the noise component and thus can be truncated
via thresholding or attenuated via Wiener filtering. Similar to
BM3D, Non-Local Bayes (NLB) [6] consists of a two-step
process that estimates the values of a latent patch from the
mean and covariance matrix of its similar patches.

The use of external image datasets for denoising has been
around in recent years. This trend is motivated by several
studies [11], [12] that show that theoretically minimal error
can be achieved by using very large datasets. Furthermore, this
approach can be made practical by applying efficient sampling
techniques on large databases [13]. Many early works [14],
[15], [16] learn an overcomplete dictionary of image patches
from an external noise-free database and impose non-local
self-similarity through a sparse representation. In a related
work, Zha et al. [17] enforced a group sparsity residual
constraint, to minimise the discrepancy between the sparse
code of the noisy image and that of a pre-filtered image.
As an alternative, many approaches [18], [19], [20] aim to
learn a statistical prior of natural image patches, such as the
Gaussian Mixture Model (GMM) of natural image patches or
patch groups for patch reconstruction in a maximum likelihood
framework.

Recently, several authors adapted Zoran et al. [18]’s patch
prior to represent image-specific and class-specific semantics.
Based on a Gaussian Mixture model (GMM), this generic
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prior captures statistics of natural patches by performing the
Expectation-Maximisation (EM) algorithm on a large dataset
of clean patches. Luo et al. [21]’s work is aimed to adapt
the generic patch prior to one that is is specific to the patch
statistics of the input image. The core of the method is a
modified version of the EM algorithm on the noisy image,
or its pre-filtered version with an estimate of the noise.
Teodoro et al. [22] proposed an approach to locally adapt the
GMM prior [18] to the class of each individual patch. This
approach enables patch-based image enhancement for multiple
classes appearing in the same image.

Nevertheless, prior work research on external image denois-
ing [14], [18], [23], [19], [24] only tackled the problem for
generic natural images. None of them has considered how
to denoise object images of a specific class by incorporating
class-specific information from object image datasets. There
has been effort in utilising class-specific priors for image
deblurring [25], [26], but these approaches are not directly
applicable to denoising. Yue et al. [24] proposed an ad-hoc
denoising method where they imposed a restrictive assumption
on the external images, which requires them to contain a
significant similarity or overlap with the input image. Since
they employed SIFT [27] as a keypoint localisation step for
image registration, the method only works well if the external
images are related to the original noisy image by a rigid
transformation.

In this paper, we propose a denoising method for images
of single objects using a noise-free external image dataset of
the same category. Unlike the existing methods that ignore the
relative locations of external patches with respect to the whole
object window, our method considers the object part semantics
during patch selection by limiting the search to a part-based
locality in the most relevant external images, aiming to make
the best use of the part-whole relationships.

Our formulation is unique and differs from previous ap-
proaches such as [23]. Our decision to express the denoising
problem in the transform domain is strongly motivated by the
need to establish a patch similarity metric that is invariant
to the local pixel intensity. In natural images, it is rare that
two patches have identical intensity values, but it is common
that patches share similar local features such as uniform areas,
smooth gradients, edges, corners, and textures. Such local
patch features are closely related to the gradient responses
and hence can be better represented by frequency coefficients
in the transform domain.

We achieve robustness to object pose and scale variations
by operating on the patch level, a similar analogy to the part-
based models of object classification, and by creating copies of
the dataset at various object scales and determining the correct
scale for the input image, which can be provided by an object
detector.

Figure 1 illustrates the imperative role of category-specific
datasets in denoising. As visible, a significant improvement in
image sharpness and PSNR is achieved when using the correct
class dataset for denoising images of known classes. The novel
contributions of our approach are as follows.

• A strategy for finding similar external patches to a given
noisy patch within the same object part, which we term

“support patches” hereafter.
• A formulation of the object category-specific patch de-

noising problem in a transform domain.
• A Gaussian model of the membership likelihood to a

support patch group for a noisy patch.
• A low-rank constraint to enforce the similarity between

the noisy patch and its support patches.

II. DENOISING PROBLEM FORMULATION

The noisy image model relates the true pixel value x to the
noisy value y at the same pixel by

y = x+ η, (1)

where η ∼ N (0, σ2
n) is assumed to be Gaussian noise with a

standard deviation σn.
We consider problem of recovering the latent (true) image,

given the noisy image of an object and a dataset of noise-free
images in the same object category. Let the matrices X, Y
represent the pixel values of the true and observed images, and
the set of matrices {Zk : k = 1, . . . ,K} denote the external
dataset.

A. Support patch search

As mentioned earlier, image denoising by collaborative
filtering relies on the similarity between patches and performs
aggregation of their denoised version. Following this approach,
we collect all the overlapping patches of the noisy image, and
denote the intensity vector of the patch centered at the i-th
pixel by yi i = 1, . . . ,M,. Likewise, xi denotes the patch
intensity vector for the corresponding location in the latent
image X.

For a given noisy patch, we find the most similar “support
patches” from the dataset of category-specific images. Due to
the similarity in their local features, support patches facilitate
noise suppression by enforcing a group sparsity constraint.
Various approaches such as BM3D [4] and non-local means
(NLM) denoising [3], [10], [6] have employed local and non-
local patch similarity to separate the latent structure of a patch
from its noise component.

In our algorithm, the support patch selection occurs in sev-
eral stages. Firstly, we select a preset number (L) of external
images that are structurally most similar to the noisy image
based on the structural similarity (SSIM) index. Subsequently,
from the l-th candidate image (l = 1, . . . L), we obtain a pool
Pi,l of patches that are similar to a given noisy patch yi. We
take into account the difference in resolution and aspect ratio
between the input and the candidate image when determining
the local search window. Suppose that H and W are the
height and width of the input image, and Hl and Wl are the
corresponding quantities of the candidate image. The center
coordinates [ri,l, ci,l]

T of the local search window in the l-th
candidate image is a linear mapping of the location [ri, ci]

T

of the i-th pixel as follows, ri,l = bri Hl

H c and ci,l = bci Wl

W c.
The search window has a preset size of 51× 51.

Finally, within each patch pool Pi,l we only retain those that
have a Euclidean distance from the input patch yi that is below
a threshold τ . We denote the resulting set of refined patches by
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Fig. 2. Searching and selecting support patches for a given noisy patch yi. Candidate images similar to the noisy image (measured by SSIM) are selected
from the given database. Subsequently, in each candidate image, we search for patches that are similar to the noisy patch, i.e. within a Euclidean distance of
τ from yi. The search is restricted to a local window in each candidate image. Finally, among the remaining patches, only the nearest neighbors to yi are
retained for denoising.

Si,l. Next, we aggregate the refined patch pools Si,l across the
candidate images. Within the resulting collection, we perform
a k-NN search for the most similar patches to yi. In the end,
we obtain a set of support patches {zi,j : j = 1, . . . , Ti}
resembling the noisy patch yi.

Figure 2 shows the procedure for searching and selecting
support patches for a given noisy patch. In the figure, the noisy
patch yi is bounded by a green rectangle (top row) while the
patches with blue boundaries illustrate members of the patch
pools Pi,l. In both the noisy and candidate images, the search
space is indicated by a red rectangular boundary.

B. Transform domain formulation

In our formulation, we opt to represent local patches in a
transform domain, rather than the patch intensity domain. This
is because matching patches in the original space of patch
intensity vectors is susceptible to a bias in the overall patch
intensity, such as local illumination. Representing patches in
the transform domain encourages matching between those that
have a various range of intensity but similar local structure.

To improve robustness to patch intensity, we subtract the
mean patch intensity from the patch intensity vector before
performing the domain transform. The per-patch mean sub-
traction effectively removes the zero-frequency (DC) bias,
yielding patches lying in a N−1-dimensional subspace, where
N is the number of patch pixel. Therefore, the latent patch
can be represented by the remaining D = N − 1 transform
coefficients. The Gaussian prior and the low-rank constraint
in the space of non-zero-frequency coefficients effectively
enforce patch similarity, and are less susceptible to variations
in patch intensity.

With this intention, we introduce the notation for represent-
ing images and patches in the discrete transform domain. Here,
we choose to use the DCT transform, although other popular
transforms such as the wavelet, Fourier, DST and the Walsh-
Hadamard transforms can be employed for the same purpose.

We denote the patch transform by T : RN → RD that maps
the original N -dimensional intensity vector to a vector of D =
N − 1 non-zero frequency DCT coefficients, with N being
the number of pixels per patch. Let Φ ∈ RN×D denote the
DCT basis spanning this D-dimensional subspace. Note that
ΦTΦ = I. Let us also denote the mean subtracted versions of
the patches xi and yi by x̄i and ȳi, respectively. The intensity
vector of these patches are related to the transform coefficient
vectors αi and βi ∈ RD by αi = ΦT x̄i, βi = ΦT ȳi, and
x̄i = Φαi, ȳi = Φβi. Once the transformation coefficients αi
is estimated, we can compute the mean-subtracted latent patch
by x̄i by an inverse DCT transform and recover the original
patch xi by adding its intensity mean to x̄i.

Next, we will formulate the various components of our
denoising problem.

C. Data fidelity

Assuming the independence of individual pixel values, the
conditional likelihood of the noisy image given the original
(noise-free) image is

p(Y|X) ∝ exp

(
−‖Y −X‖22

σ2
n

)
, (2)

where ‖ · ‖2 stands for the `2 norm of a vector.
The reconstruction of the noise-free image X aims to

maximise the conditional log likelihood in Equation 2, which
is equivalent to minimising the data fidelity term ‖Y −X‖22,
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which is a sum of squared errors over image pixels. Since
each image pixel belongs an approximately equal number of
overlapping patches, i.e. N , the term above can be approxi-
mated as a multiple of the sum of these terms evaluated on
a per-patch basis, i.e. ‖Y − X‖22 ≈ 1

N

∑M
i=1 ‖yi − xi‖22.

Furthermore, yi − xi = ȳi − x̄i assuming that the mean
intensity of the latent patch xi is estimated from that of yi,
and ‖ȳi − x̄i‖22 = ‖Φ(αi − βi)‖22 = ‖αi − βi‖22 due to the
orthonormality of the basis Φ. Expressing the data fidelity in
terms of the transform coefficients, we obtain

‖Y −X‖22 ≈
1

N

M∑
i=1

‖αi − βi‖22. (3)

D. Support patch group membership

Now we define an additional constraint that imposes the
similarity between a noisy patch and those from an image
dataset belonging to the same object category. Recall that
the patch search described in Section II-A results in Ti
support patches {zi,j : j = 1, . . . , Ti} that resemble the
local appearances of the noisy patch yi. Here, we rely on
the statistics of the support patch group zi,j in the transform
domain in order to predict the latent patch xi from yi. Let
the transform coefficients of zi,j be {γi,j : j = 1, . . . , Ti},
where Ti is the number of support (most similar) patches of
patch xi, and µi and Σi be the mean and covariance matrix
estimated from these transform coefficient vectors.

Assuming that similar patches belong to a Gaussian distri-
bution in the transform domain, the most probable xi is one
that maximises its likelihood of belonging to the support patch
group, i.e. p(αi|µi,Σi) ∝ exp

(
− 1

2 (αi − µi)TΣ−1
i (αi − µi)

)
.

This is equivalent to minimising the log-likelihood

log p(αi|µi,Σi) ∝
1

2
(αi − µi)TΣ−1

i (αi − µi), (4)

which is the Mahalanobis distance from a noisy patch to the
distribution of its support patches in the transform domain.

E. Low-rank constraint

We further formulate a low-rank constraint concerning a
noisy patch and its support patches. The intuition behind this
constraint is that the local structure of a patch can be sparsely
represented by a basis with a low cardinality. Therefore, when
similar patch vectors are stacked as columns of a matrix,
the matrix should exhibit the low rank property and have
sparse singular values. In [7], the authors derived this low-
rank property directly from the common observation that the
structural similarity between patches can be encoded as a
group sparsity constraint, in terms of the `p,q norm of the
above matrix.

However, the rank minimisation problem is NP-hard, and
thus is intractable to solve directly. In their work, Candès
and Recht [28] have provably derived the tightest convex
relaxation of the rank minimisation problem in the form of
a matrix nuclear norm minimisation problem. Under certain
conditions, these two problems have exactly the same unique
solution. Therefore, the low-rank approximating matrix can be

recovered exactly by solving the nuclear norm minimisation
(NNM) problem.

To formulate the NNM problem, for each latent patch
xi, we form a data matrix Mi containing its transform
coefficients and those of its support patches as its columns,
as Mi = [αi, γi,1, . . . , γi,Ti

]. Here, we aim to minimise the
matrix nuclear norm ‖Mi‖∗, which is the sum of its singular
values.

III. OPTIMISATION

In previous sections, we have described the data fidelity term
in Equation 3, the patch group membership term in Equation 4
and the nuclear norm constraint on Mi for each noisy patch
yi. Aggregating all these terms over all the image patches
yi, i = 1, . . . ,M , we formulate the overall minisation problem
as

L =

M∑
i=1

Li, (5)

where the term Li is related to only the i-th noisy patch as

Li =
1

σ2
n

‖αi − βi‖22 + λ1(αi − µi)TΣ−1
i (αi − µi)

+ λ2‖[αi, γi,1, . . . , γi,Ti ]‖∗,
(6)

where {γi,j : j = 1, . . . , Ti} are the transform coefficients of
the support patches for the patch xi, ‖ ·‖∗ is the nuclear norm
of a matrix and λ1 and λ2 are the weights of the support patch
group likelihood and the nuclear norm terms.

A. Patch denoising

We can minimise the overall objective function in Equa-
tion 5 by minimising each of the term Li independently.
To this end, we introduce an auxiliary variable Mi ,
[αi, γi,1, . . . , γi,Ti ] to Equation 6. Subsequently, we relax
the equality constraint as minimising the squared Frobenius
norm ‖Mi− [αi, γi,1, . . . , γi,Ti

] ‖2F and incorporate it into the
objective function.

In addition, we normalise the term by a Lagrange multiplier
equal to 1

(Ti+1)σ2
n

, which accounts for the image noise and the
number of support patches. For a patch xi, we then minimise
Li with respect to the transform αi and the variable Mi

(α∗
i ,M

∗
i ) = argmin

αi,Mi

1

σ2
n

‖αi − βi‖22

+ λ1(αi − µi)TΣ−1
i (αi − µi)

+
‖Mi − [αi, γi,1, . . . , γi,Ti ] ‖2F

(Ti + 1)σ2
n

+ λ2‖Mi‖∗.

(7)

The relaxed objective function in Equation 7 is convex with
respect to αi and Mi separately, while the other variable is
fixed. More specifically, when Mi is fixed, the non-constant
terms, including the squared Frobenius norm, are quadratic
functions of αi. On the other hand, when αi is fixed, the
objective function involves a nuclear norm of Mi and a
squared Frobenius norm. It is known that the nuclear norm
is convex in the space of the matrix Mi, and the squared
Frobenius norm is regarded as a quadratic function of the
matrix elements.
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We employ an iterative procedure to minimise the cost
function in Equation 7. Each iteration involves an alternating
optimization scheme with respect to either αi or Mi, while
fixing the other. Since each of these steps aims to solve a
convex sub-problem with respect to its own variable, this
scheme is guaranteed to converge to a global minimum in
each step, with respect to either αi or Mi.

1) Update of αi with fixed Mi: With a fixed value of M∗
i

at the current iteration, we solve the sub-problem

α∗
i = argmin

αi

‖αi − βi‖22
σ2
n

+ λ1(αi − µi)TΣ−1
i (αi − µi)

+
‖αi −M∗

i (:, 1)‖22
(Ti + 1)σ2

n

,

(8)

where M∗
i (:, 1) denotes the first column of the matrix M∗

i .
Since the problem above is quadratic in αi, taking its derivative
leads to the following linear equation, which can be solved by
standard techniques.(
Ti + 2

Ti + 1
I + λ1σ

2
nΣ−1

i

)
α∗
i = βi + λ1σ

2
nΣ−1

i µi +
M∗

i (:, 1)

Ti + 1
.

(9)

2) Update of Mi with fixed αi: With the values of α∗
i

obtained from the previous step, we form a data matrix
M̂i , [α∗

i , γi,1, . . . , γi,Ti
] for each patch. The sub-problem

to be solved with respect to Mi is then stated as

M∗
i = argmin

Mi

‖Mi − M̂i‖2F + τ‖Mi‖∗, (10)

where τ = λ2(Ti + 1)σ2
n.

The above problem is related to finding an approximation
to a given matrix with a minimal nuclear norm. To solve the
problem, we turn our attention to the singular value shrinkage
operator developed by Cai et al. [29]. Suppose that we have
UΛV T as the singular value decomposition of M̂i, with Λk
being the k-th singular value. Theorem 2.1. in [29] derives
the optimal solution to Equation 10 by soft-thresholding the
singular values to obtain

M∗
i = USτ (Λ)V T , (11)

where the soft-thresholding operator is defined as Sτ (Λ) =
diag({(Λk − τ)+}) with (x)+ = max(x, 0).

B. Recovering latent image

Once we have estimated the transform coefficients of indi-
vidual patches, we recover them in the pixel domain by an
inverse transform as xi = ΦTαi,∀i = 1, . . . ,M (assuming
that Φ is orthonormal). To reconstruct the full image, we
translate the patches to their original locations and average the
values of overlapping patches at shared pixels. Let Ri denote
the patch extraction matrix at the i-th pixel of an image, i.e.
xi = RiX. With the known matrices Ri’s, the latent image is
the optimal solution to the problem

X∗ = argmin
X

λ0‖X−Y‖22 +

M∑
i=1

‖RiX− xi‖22. (12)

Algorithm 1 Denoising with category-specific support patches
Input:

Y: noisy input image.
σn: noise standard deviation.
λ0, λ1, λ2: term weights in Equations 6 and 12.
ρ: relaxation factor in Equations 14.

1: t← 0, X(0) ← Y, Y(0) ← Y, ς(0) ← σ2
n.

2: repeat
3: for patch y

(t)
i in Y(t) do

4: Update β(t)
i ← Φy

(t)
i .

5: {z(t)i,j : j = 1, . . . , Ti} ← support patches of x
(t)
i .

6: for j = 1→ Ti do
7: Support patch transform γ

(t)
i,j ← Φz

(t)
i,j .

8: end for
9: (µ

(t)
i ,Σ

(t)
i )← mean and covariance matrix of {γ(t)i,j :

1 ≤ j ≤ Ti}.
10: repeat
11: Solve Equation 9 for α(t)

i .
12: Update matrix M

(t)
i by Equation 11.

13: until Convergence
14: Update x

(t)
i ← ΦTα

(t)
i .

15: end for
16: Reconstruct the image X(t) by Equation 13.
17: Regularise the input image Y(t+1) by Equation 14.
18: t← t+ 1.
19: Update noise variance ς(t+1) ← ρ|ς(t) − 1

M ‖Y −
Y(t+1)‖2|

20: until ‖X(t) −X(t−1)‖2 ≤ ε
21: return Latent (denoised) image X(t).

where λ0 is a positive constant. The least-squares solution to
the above equation is

X∗ =

(
λ0I +

M∑
i=1

RTi Ri

)−1(
λ0Y +

M∑
i=1

RTi xi

)
(13)

The process of patch denoising and latent image recovery
occurs iteratively until convergence. In addition, we apply
the iterative input regularisation technique in [30]. Such an
approach has been shown to be effective in denoising methods
using total variation and wavelets [31] and spatially adaptive
iterative singular value thresholding [7]. Specifically, in the t-
th iteration, the algorithm takes input from a regularised noisy
image Y(t) computed as follows

Y(t+1) = X(t) + ρ
(
Y −X(t)

)
, (14)

where X(t) is the current latent image and ρ is a relaxation
parameter.

C. Algorithm implementation

The overall denoising algorithm consists of interleaving
steps of individual patch denoising and whole image restora-
tion. The proposed iterative procedure is summarised in Al-
gorithm 1, with the iteration number denoted by t. As the
latent image X is updated in every iteration, so are the support
patches (from the external image dataset) of its patches. Line 5
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implements the support patch search procedure described in
Section II-A. With the support patches in hand, individual
patches in the input image are denoised by alternating the
optimisation with respect to the variables αi and Mi (in
lines 10– 13). At the end of each iteration, the entire latent
image X(t) is reconstructed from the denoised patches and the
input image Y(t+1) to the next iteration is updated according
to Equation 14. The noise variance ς(t+1) , (σ(t+1))2 is
also updated according to the adjusted input as ς(t+1) ←
λn|ς(t)− 1

M ‖Y−Y(t+1)‖2|, where M is the number of image
pixels and λn = 0.17. The algorithm terminates when the
change ‖X(t) −X(t−1)‖2 falls below a tolerance threshold ε.

To improve patch similarity, we follow Foi et al. [8] and
perform a DCT transform on the mean-subtracted intensity of
local patches and subsequently add the mean patch intensities
back during patch reconstruction. This effectively means that
we only involve the AC components γi,j of the support patches
for patch-wise denoising (Section III-A). This technique is
based on the observation that subtracting the direct current
(DC) component of each patch from its intensity values
effectively increases the number of similar local patterns in
each group, facilitating a more thorough selection of the most
similar support patches to a noisy patch for collaborative
filtering. Further, the per-patch mean subtraction improves the
chance of finding a good match, which means a lower number
of external images is required for patch-wise denoising.

IV. EXPERIMENTS

In this section, we present a detailed performance evaluation
of our method against a number of state-of-the-art internal
and external image denoising algorithms. Firstly, we examine
the influence of the number of category-specific images and
support patches on the denoising accuracy. Subsequently, we
report quantitative and qualitative results for all the methods
under study.

A. Datasets and parameter settings

We performed experimental validation on the follow-
ing datasets, including CMU PIE face dataset [32], Car
dataset [33], Cat dataset [34], Gore face dataset [35] and
the Multiview dataset [36]1. For each dataset, we randomly
selected half of the images to form a category-specific dataset
and between 10 and 15 images from the remaining half as
ground-truth images for denoising. It is to be noted here that
we have disjoint image sets for the test and training i.e. neither
the same people appear in the text and training images, nor the
same objects with different scale and pose. To generate noisy
images, we corrupt the test images by additive white Gaussian
noise with standard deviations (std) of σn = 30, 50, 70, 100,
similar to the practice employed elsewhere [24], [19], [23],
[20], [37]. We also intend to demonstrate the effectiveness of
our algorithm at the high noise std of 50 and beyond.

For evaluation purposes, we use Peak Signal-to-Noise Ratio
(PSNR) index as the error metric. We compare our proposed

1In practice, we can utilise images of particular object categories from
publicly available datasets such as PASCAL VOC and ImageNet.

method with numerous state-of-the-art methods, including
BM3D [4], WNNM [38], NLM [3], SAPCA [5], TSID [9],
EPLL [18], PCLR [19], PGPD [20] and TID [23]. To ensure
a fair comparison, we modify the state-of-the-art internal
denoising methods of NLM, BM3D, SAPCA and TSID to
perform search on class-specific image datasets. We use the
same settings as their original implementations.

Our method shares a number of common parameters with
algorithms that exploit patch similarity, and inherits the pa-
rameter values from the prior works. Similar to BM3D [4] and
WNNM [38], we choose a patch size of 8. When searching for
support patches, we select L = 16 candidate images that are
most similar to the noisy image, as described in the denoising
method using targeted databases, i.e. TID [23]. In addition,
we employ a search window with a size of 51 × 51 in each
candidate image. In the last stage of support patch search,
the number of nearest neighbors k is set to 16, similar to the
external denoising methods of eBM3D, eSAPCA and eNLM.

Further, we set the parameters specific to our optimisation
problem as follows, λ0 = 1, λ1 = 0.5, λ2 = 10 and ρ = 0.18.
The values of λ0, λ1 and λ2 are determined by a sensitivity
analysis such as that in Section IV-D, using a small number
of noisy images as the validation set. Our algorithm inherits
the value of ρ from the PCLR, WNNM and PGPD methods.

B. Influence of external dataset size

Here, we examine the influence of the size of the external
dataset on the denoising performance, while fixing all the other
parameters. To this end, we experiment with dataset sizes of
32, 64, 256 and 1024 by incrementally adding images to the
clean image dataset. We choose 15 images among those not in
the dataset and simulate noisy input by adding Gaussian noise
with a standard deviation σn of 30 and 50. The left panel
in Figure 3 demonstrates the robustness of our algorithm to
the dataset size, showing that an increasing dataset size only
slightly improves the denoising accuracy. Even with a small
dataset size of 32, our algorithm can achieve an average PSNR
of 32.3 dB for σn = 30 and 30 dB for σn = 50.

C. Influence of the number of support patches

Similarly, we test the robustness of our algorithm to the
number of support patches required for denoising a single
patch. For this purpose, we use 8, 16, 32 and 64 support
patches per noisy patch. The plots on the right-hand side
of Figure 3 shows that the average PSNR declines as the
number of support patches increases. The main reason for this
phenomenon is that the variation in appearance between the
support patches is likely to increase with a larger number of
support patches, and their aggregation would result in a loss
of local details due to averaging.

D. Relative importance of priors

We assess the relative contribution of the Gaussian prior and
the low rank term on the Gore dataset for σ = 50. The pres-
ence of both terms improves the PSNR compared to the sce-
nario where one is absent. For example, when λ1 ∈ {1, 10, 40}
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Influence of the dataset size Impact of the number of support patches

Fig. 3. Denoising accuracy (in PSNR) at noise standard deviations σn = 30 and σn = 50. Left: Our method is robust to the changes in the dataset size,
which has a low impact on the results. Right: Increasing the number of support patches slightly degrades the denoising results.

TABLE I
RUN-TIME COMPARISONS (IN SECONDS) ON A TEST IMAGE OF SIZE 304× 228.

Method BM3D eBM3D eNLM eSAPCA eTSID PCLR PGPD TID EPLL WNNM Ours
Time (s) 1.12 173.5 164.6 178.8 178.9 192.4 12.5 172.2 39.9 211.8 119.9

TABLE II
DENOISING PERFORMANCE (IN PSNR) WHEN USING DIFFERENT IMAGE
CATEGORY DATASETS. THE PSNR IS MAXIMAL WHEN THE EXTERNAL

DATASET CATEGORY MATCHES THE NOISY IMAGE CATEGORY.

Dataset
Noisy Face Cat Texture Text Car
Face 26.80 24.79 22.79 17.03 24.89
Cat 25.01 28.00 25.24 19.57 25.87
Texture 24.09 24.67 28.13 19.33 24.62
Text 8.43 15.41 14.50 21.09 16.33
Car 18.41 19.80 18.85 16.93 21.90

and λ2 = 0 the resulting PSNR are {27.58, 27.56, 27.56},
respectively. When λ1 = 0 and λ2 ∈ {1, 10, 40} the results
are {20.14, 26.33, 27.09}. When λ1 = 1 and λ2 = 10, the
average PSNR increases to 27.82 dB.

E. Run-time comparisons

We have implemented our algorithm in MATLAB on an
Intel CoreTM i7 machine with 16 GB of memory. In Table I,
we show the running times for various methods including
ours for an image of size 304 × 228 and an external dataset
containing 10 images of similar sizes. The running time of our
method, i.e. 119s, is shorter than the MATLAB implemen-
tations of various state of the art external image denoising
methods e.g., eNLM, eBM3D, eTSID, TID, WNNM and
eSAPCA. We observe that our method spends most of its time
on patch search. The speed of our algorithm can be improved
by applying fast patch search algorithms e.g., KD tree [40]
and patch match [41], [42]. In addition, GPU implementations
can be employed to parallelise the denoising of patches in
independent threads.

F. Role of external image category

Now we illustrate the importance of choosing the correct
external image category for denoising. To this end, we provide
datasets of different object categories as input to our method
for denoising the same noisy images. The categories involved
in our experiment are Face (Gore dataset), Cat, Texture (from
the Multiview dataset), Text [23] and Car. In Table II, we
show the average PSNR of the denoised images for each pair
of noisy image category and dataset category. Note that the
PSNR values reported are averaged across all the mentioned
noise levels (σn = 30, 50, 70, 100) and noisy images. Each
row of the table corresponds to a noisy image category while
each column represents a dataset category.

The overall trend is that the PSNR for each noisy image
category reaches its maximum when the dataset belongs to
the same category, as can be observed along the diagonal of
Table II. On the other hand, the PSNR diminishes significantly
when the dataset belongs to a different category, which con-
firms the benefit of category-specific information for denoising
purposes. This observation also demonstrates the ability of our
algorithm to extract useful category-specific information from
the support patches.

G. Sensitivity to pose variations

We analyse the response of our method when the noisy test
images contain significant pose variations including out-of-
plane rotations, semi-profile views and different camera views.
We present sample results in Figures 4 and 5.

As can be seen, our method attains qualitatively the most
appealing results and quantitatively the best PSNR scores
among the all considered methods thanks to its efficient
scheme of support patch selection. It restores the different
pose faces without visible deterioration of the facial details.
Meanwhile, the competitive methods generate clearly visible
artifacts induced by the noise distribution.
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Input (18.57 dB) BM3D (32.71 dB) e-BM3D (31.84 dB) e-NLM( 31.26 dB)

Original e-SAPCA (32.36 dB) e-TSID (32.15 dB) PCLR (32.78 dB) PGPD (32.71 dB)

TID (30.54 dB) EPLL (32.34 dB) WNNM (32.88 dB) Ours (33.37 dB)

Fig. 4. Denoising results produced by different methods for a face image in a profile view from the FEI face dataset [39] when σn = 30. Our method is
able to denoise the input image even with a different pose from those in the noise-free dataset (Differences are better viewed with high resolution display).

Input BM3D e-BM3D e-NLM e-SAPCA e-TSID
22.11 dB 32.02 dB 33.80 dB 32.91 dB 33.36 dB 33.41 dB

Original
PCLR PGPD TID EPLL WNNM Ours

32.21 dB 31.82 dB 33.57 dB 31.80 dB 32.14 dB 34.56 dB

Fig. 5. Denoising results produced by different methods for a face image selected from the Gore dataset [35] when σn = 20. Our method is able to denoise
the face image even with a different pose from those in the noise-free dataset.
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TABLE III
PERFORMANCE COMPARISON BETWEEN OUR METHOD AND INTERNAL DENOISING TECHNIQUES ON SEVERAL DATASETS, IN TERMS OF PSNR (IN DB).

σn = 30

BM3D NLM SAIST SAPCA TSID DDID PID NLB WNNM AID Ours

Gore 29.28 27.59 29.77 29.00 28.21 29.23 29.21 29.04 29.35 29.32 29.95
Cat 30.08 27.08 29.86 30.03 29.45 29.97 29.95 29.86 30.11 29.96 31.18
CMU 32.56 30.37 32.48 32.61 31.92 32.65 32.73 32.33 32.63 32.45 33.38
View 28.35 27.08 28.20 28.43 28.82 28.19 28.34 28.26 28.46 28.31 31.96

σn = 50
Gore 26.54 23.54 27.11 26.23 25.37 26.48 26.57 26.41 26.37 26.58 27.82
Cat 27.96 24.69 27.76 27.91 27.18 27.89 27.91 27.70 27.97 27.80 28.79
CMU 30.17 27.92 30.07 30.11 29.29 30.21 30.48 29.84 30.21 29.90 30.64
View 26.35 24.69 26.10 26.39 26.53 26.17 26.32 26.15 26.39 26.27 28.64

σn = 70
Gore 24.94 21.30 24.01 25.13 23.43 24.68 24.88 24.64 24.32 24.81 25.58
Cat 26.56 23.21 26.24 26.21 25.64 26.45 26.59 26.15 26.52 26.36 26.80
CMU 28.45 26.00 28.36 27.90 27.52 28.51 28.89 27.95 28.58 28.16 28.72
View 25.14 23.21 24.94 24.92 25.09 24.92 25.07 24.83 25.16 25.00 27.16

σn = 100
Gore 23.21 19.06 22.21 23.31 21.30 22.77 23.05 22.76 22.48 22.95 23.86
Cat 25.08 21.95 24.69 24.56 23.97 24.91 25.20 24.46 25.02 24.87 25.21
CMU 26.57 24.32 26.56 25.90 25.62 26.63 27.14 26.10 26.74 26.36 26.59
View 23.89 21.95 23.50 23.57 23.64 23.62 23.86 23.49 23.85 23.74 24.79

TABLE IV
PERFORMANCE COMPARISON BETWEEN OUR METHOD AND EXTERNAL DENOISING TECHNIQUES ON SEVERAL DATASETS, IN TERMS OF PSNR (IN DB).

σn = 30

eBM3D eNLM eSAPCA eTSID PCLR PGPD TID EPLL Ours
Gore 29.49 27.30 28.56 29.19 29.04 29.38 29.68 29.21 29.95
Cat 28.35 24.30 26.01 26.98 30.11 30.07 26.21 29.77 31.18
CMU 31.59 29.63 30.74 30.65 32.66 32.55 28.56 32.59 33.38
View 26.79 25.21 26.13 24.45 28.37 28.34 23.90 28.17 31.96

σn = 50
Gore 26.95 26.21 26.79 26.64 25.80 26.70 27.55 26.59 27.82
Cat 26.42 23.57 25.07 25.68 27.87 28.01 24.77 27.74 28.79
CMU 29.27 28.12 29.06 28.35 30.26 30.18 27.12 29.51 30.64
View 24.88 24.47 24.71 23.42 26.32 26.39 23.01 26.13 28.64

σn = 70
Gore 25.42 25.11 25.37 24.68 23.70 24.89 25.40 24.69 25.58
Cat 25.13 23.23 24.08 24.16 26.48 26.63 23.34 26.23 26.80
CMU 27.68 27.31 27.63 26.23 28.66 28.57 26.04 27.86 28.72
View 23.55 23.54 23.81 23.23 25.05 25.21 22.19 24.86 27.16

σn = 100
Gore 23.38 23.26 23.32 22.13 21.93 23.00 23.30 22.85 23.86
Cat 23.90 22.20 23.10 22.44 25.09 25.12 23.06 24.82 25.21
CMU 25.88 25.65 25.95 23.84 26.91 26.71 24.49 26.13 26.59
View 22.28 22.67 21.84 22.63 23.80 23.93 21.25 23.61 24.79

H. Comparisons with internal denoising methods

We first present the quantitative comparisons with the state-
of-the-art internal denoising methods in Table III. The scores
are averaged across all test images in the datasets. Overall,
our method is the best performer.

In Figure 6 it is visible that the proposed algorithms can
restore high-frequency details with a closer resemblance to
the ground truth than the existing internal denoising methods.
Specifically, the highly-textured pattern is clearly reproduced
by our method, while these details are highly distorted or
smoothed out by the other methods. Upon close inspection,
most of the other methods either smooth out the periodical

variations of the background texture or introduce additional
artifacts and artificial textures. This phenomenon explains the
much inferior PSNR produced by the other methods.

I. Comparisons with external denoising methods

In Table IV, we present the average PSNR measured across
the Gore, Cat, CMU-PIE and Multiview datasets. Among the
considered methods, ours is the best overall performer (in
terms of PSNR) across most combinations of datasets and
noise levels.

In addition to the superior quantitative results, our method
also delivers superior visual quality. As an example, we
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Original Input (14.16 dB) BM3D (24.72 dB) SAPCA (24.70 dB) NLM (24.16 dB) SAIST (24.25 dB)

DDID (24.43 dB) PID (24.55 dB) NLB (24.17 dB) WNNM (24.79 dB) AID (24.55 dB) Ours (26.17 dB)

Fig. 6. Visual denoising results produced for σn = 50, by several methods for a sample texture image from the Multiview dataset [36]. Our method is able
to recover much more texture details as compared to competing methods.

Original Input e-BM3D e-NLM e-SAPCA e-TSID
18.59 dB 29.47 dB 26.79 dB 28.01 dB 28.83 dB

PCLR PGPD TID EPLL AID Ours
29.86 dB 30.31 dB 30.57 dB 29.68 dB 29.90 dB 31.50 dB

Fig. 7. Denoising results achieved by various methods for a sample image with a noise standard deviation σn = 30. The ground truth image is from the
Gore dataset [35].

provide visual comparisons between the results generated by
our method and the state of the art alternatives for a face image
with the noise level σn = 30 and a texture image with the noise
level σn = 50, as shown in Figures 7 and 8, respectively.

In Figure 7, the face image denoised by our method is
indeed of higher visual quality than their counterparts. Within
the face region, our algorithm can reproduce all the facial parts
without distortion, whereas the other methods causes different
kinds of artifacts. Furthermore, most of the other methods in
this comparison introduce visible artifacts on the forehead and
the chin. The lower performance of the other methods could
be explained by their difficulty in finding correct matches for
patch grouping due to high noise and high variance within
each patch group. As a result of inaccurate grouping of
patches, texture details are destroyed and incoherent patterns

are generated.
In Figure 8, the proposed algorithms is able to restore high-

frequency details with a closer resemblance to the ground truth
than existing methods. Specifically, the highly-textured pattern
is clearly reproduced by our method, while these details are
highly distorted or smoothed out by the other methods. Upon
close inspection, most of the other methods either smooth out
the periodical variation of the background texture or introduce
additional artifacts and artificial textures. This phenomenon
implies a much inferior PSNR produced by others than our
method.

J. Robustness to misalignment and rotation

In the top row of Figure 9, we show sample noise-free
images in the Cat database. In the bottom row, we show a
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Original Input (14.16 dB) e-BM3D (23.21 dB) eNLM (23.56 dB) EPLL (24.69 dB) eSAPCA(23.88 dB)

eTSID (24.35 dB) TID (22.23 dB) PCLR (24.67 dB) PGPD (24.71 dB) AID (24.69 dB) Ours (27.88 dB)

Fig. 8. Visual denoising results for a texture image selected from the Multiview dataset [36] where σn = 50. Our method is able to recover much more
texture details than the others (please zoom-in to see details).

sample support images

Original Input (14.16 dB) eBM3D (24.24 dB) eNLM (21.57 dB) TID (23.64 dB) EPLL (25.23 dB)

eSAPCA (22.73 dB) eTSID (23.81 dB) PCLR (25.35 dB) PGPD (25.31 dB) AID (25.32 dB) Ours (26.41 dB)

Fig. 9. Denoising results for different methods from the dataset in [34] when σn = 50. The top two rows show the candidate images from the dataset that
are most similar to the noisy image.

noisy input image and the corresponding denoised one. We
observe that while the appearances and expressions of cats
in the support images significantly vary, and there are severe
misalignments between them, our method still generates much
higher PSNR than other methods.

K. Extension to color images

For noisy color images, we first perform a luminance-
chrominance2 transformation. Let Y denotes the luminance
channel, and U and V denote the chrominance channels. Often,
the luminance channel provides prominent texture information

2We consider opponent color models yet any other transformation such as
YCbCr, Lab can be used.

while the chrominance channels endure lower SNR [44].
We specifically deal with the high noise variance in the Y
channel with our method, while simply applying BM3D to
the chrominance channels. In Table V and Fig. 10, we present
comparison with the current state-of-the-art color image de-
noising algorithms [6], [43]. One can observe that our method
outperforms all existing methods on three benchmark datasets
for five different noise levels.

V. CONCLUSION AND FUTURE WORK

We have presented an effective algorithm for denoising
object images using support patches from an image dataset
of the same category. The patch selection strategy aims to
draw support patches within a locality of the input patch from
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TABLE V
DENOISING PERFORMANCE IN PNSR (DB) ON COLOR IMAGES FOR NOISE LEVELS σn = 20, 50, 70, 80, 100. BEST RESULTS ARE IN BOLD.

Methods CBM3D [43] NLB [6] Ours
σn 30 50 70 80 100 30 50 70 80 100 30 50 70 80 100

D
at

as
et

s FEI 35.59 33.23 31.55 30.88 29.68 34.99 33.32 31.60 30.91 29.65 35.99 33.66 32.30 31.62 30.39
Views 29.28 27.19 25.94 25.46 24.60 29.06 27.12 25.44 24.95 24.02 30.07 27.75 26.94 26.50 25.65
CMU 31.70 29.29 27.68 27.05 25.86 32.56 29.11 25.72 24.41 22.23 32.84 30.90 29.56 29.15 28.30

Original Input ( 22.10 dB) CBM3D (32.71 dB) NLB (32.92 dB) Our (33.63 dB)

Original Input ( 10.07 dB) CBM3D (31.02 dB) NLB (31.06 dB) Our (32.64 dB)

Fig. 10. Comparison of a few denoising methods on color images from the datasets in [36] and [39], where the noise standard deviations are σn = 20 and
σn = 80, respectively. Our method is able to recover much more details than the others.

the best candidate images. The key difference from existing
external denoising methods is the formulation of the denoising
problem in a transform domain. In addition, we include
novel terms to model support patch group membership and
to promote the similarity between the noisy and the support
patches. We have validated the robustness of our algorithm to
the dataset size, the number of support patches, and verified
the importance of choosing the appropriate dataset category.
Overall, our algorithm outperforms all state-of-the-art methods
included in our study, both numerically and visually.

An important question that requires more discussion is
the behaviour and sensitivity of the algorithm even larger
variations in pose, facial expressions, size, style, and view
angle. Seeking an answer to this question will help us in
improving the robustness of the algorithm. This aspect of our
method will be studied in our future work.
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